2,123 research outputs found

    Dashboards and visualisation tools for enhancing creativity in business master students

    Full text link
    [EN] Dashboards are a basic element in Data Science. Well planned dashboards help the staff of a company at all levels of the organization. They allow them to ask questions and respond them in real time. As a result, this information allows them to make appropriate decisions and facilitates innovation. A fundamental component in the dashboards are the visualizations by means of dynamic graphic objects that can be explored. These visualizations must be analyzed dynamically so that business master students can intuitively arrive at a series of insights that bring them closer to the nature of the problems. Learning by doing and consulting. We are going to use a dashboard about innovation elaborated by Bankinter Fundation in the Platform Google Data Analytics. The proposed teaching dynamic includes the formation of work teams of 5-7 students. The challenge start when each group pose several questions to the rest of the teams. To answer these questions the students must consult the proposed dashboard. There is a time limit to answer each question. The winner is the team that answers correctly more questions and explains the way to obtain this information. This way, students get used to dashboards and visualisation tools and start learning with a good dashboard model that prepares them to later select and design proper tools. As a further result, we have appreciated that using visualisation in teaching can increase student engagement and performance.González-Ladrón-De-Guevara, F.; Fernández-Diego, M. (2021). Dashboards and visualisation tools for enhancing creativity in business master students. IATED. 8799-8804. https://doi.org/10.21125/inted.2021.1836S8799880

    Potential and limitations of the ISBSG dataset in enhancing software engineering research: A mapping review

    Full text link
    Context The International Software Benchmarking Standards Group (ISBSG) maintains a software development repository with over 6000 software projects. This dataset makes it possible to estimate a project s size, effort, duration, and cost. Objective The aim of this study was to determine how and to what extent, ISBSG has been used by researchers from 2000, when the first papers were published, until June of 2012. Method A systematic mapping review was used as the research method, which was applied to over 129 papers obtained after the filtering process. Results The papers were published in 19 journals and 40 conferences. Thirty-five percent of the papers published between years 2000 and 2011 have received at least one citation in journals and only five papers have received six or more citations. Effort variable is the focus of 70.5% of the papers, 22.5% center their research in a variable different from effort and 7% do not consider any target variable. Additionally, in as many as 70.5% of papers, effort estimation is the research topic, followed by dataset properties (36.4%). The more frequent methods are Regression (61.2%), Machine Learning (35.7%), and Estimation by Analogy (22.5%). ISBSG is used as the only support in 55% of the papers while the remaining papers use complementary datasets. The ISBSG release 10 is used most frequently with 32 references. Finally, some benefits and drawbacks of the usage of ISBSG have been highlighted. Conclusion This work presents a snapshot of the existing usage of ISBSG in software development research. ISBSG offers a wealth of information regarding practices from a wide range of organizations, applications, and development types, which constitutes its main potential. However, a data preparation process is required before any analysis. Lastly, the potential of ISBSG to develop new research is also outlined.Fernández Diego, M.; González-Ladrón-De-Guevara, F. (2014). Potential and limitations of the ISBSG dataset in enhancing software engineering research: A mapping review. Information and Software Technology. 56(6):527-544. doi:10.1016/j.infsof.2014.01.003S52754456

    Application of mutual information-based sequential feature selection to ISBSG mixed data

    Full text link
    [EN] There is still little research work focused on feature selection (FS) techniques including both categorical and continuous features in Software Development Effort Estimation (SDEE) literature. This paper addresses the problem of selecting the most relevant features from ISBSG (International Software Benchmarking Standards Group) dataset to be used in SDEE. The aim is to show the usefulness of splitting the ranked list of features provided by a mutual information-based sequential FS approach in two, regarding categorical and continuous features. These lists are later recombined according to the accuracy of a case-based reasoning model. Thus, four FS algorithms are compared using a complete dataset with 621 projects and 12 features from ISBSG. On the one hand, two algorithms just consider the relevance, while the remaining two follow the criterion of maximizing relevance and also minimizing redundancy between any independent feature and the already selected features. On the other hand, the algorithms that do not discriminate between continuous and categorical features consider just one list, whereas those that differentiate them use two lists that are later combined. As a result, the algorithms that use two lists present better performance than those algorithms that use one list. Thus, it is meaningful to consider two different lists of features so that the categorical features may be selected more frequently. We also suggest promoting the usage of Application Group, Project Elapsed Time, and First Data Base System features with preference over the more frequently used Development Type, Language Type, and Development Platform.Fernández-Diego, M.; González-Ladrón-De-Guevara, F. (2018). Application of mutual information-based sequential feature selection to ISBSG mixed data. Software Quality Journal. 26(4):1299-1325. https://doi.org/10.1007/s11219-017-9391-5S12991325264Angelis, L., & Stamelos, I. (2000). A simulation tool for efficient analogy based cost estimation. Empirical Software Engineering, 5(1), 35–68. https://doi.org/10.1023/A:1009897800559 .Auer, M., Trendowicz, A., Graser, B., Haunschmid, E., & Biffl, S. (2006). Optimal project feature weights in analogy-based cost estimation: improvement and limitations. Software Engineering, IEEE Transactions on, 32(2), 83–92.Awada, W., Khoshgoftaar, T. M., Dittman, D., Wald, R., Napolitano, A. (2012). A review of the stability of feature selection techniques for bioinformatics data. In 2012 I.E. 13th International Conference on Information Reuse and Integration (IRI) (pp. 356–363). Presented at the 2012 I.E. 13th International Conference on Information Reuse and Integration (IRI). https://doi.org/10.1109/IRI.2012.6303031 .Battiti, R. (1994). Using mutual information for selecting features in supervised neural net learning. Neural Networks, IEEE Transactions, 5(4), 537–550.Bennasar, M., Hicks, Y., & Setchi, R. (2015). Feature selection using joint mutual information maximisation. Expert Systems with Applications, 42(22), 8520–8532. https://doi.org/10.1016/j.eswa.2015.07.007 .Bibi, S., Tsoumakas, G., Stamelos, I., & Vlahavas, I. (2008). Regression via classification applied on software defect estimation. Expert Systems with Applications, 34(3), 2091–2101. https://doi.org/10.1016/j.eswa.2007.02.012 .Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16–28.Chatzipetrou, P., Papatheocharous, E., Angelis, L., Andreou, A. S. (2012). An investigation of software effort phase distribution using compositional data analysis. In 2012 38th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA) (pp. 367–375). Presented at the 2012 38th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA). https://doi.org/10.1109/SEAA.2012.50 .Chen, Z., Menzies, T., Port, D., & Boehm, B. (2005). Feature subset selection can improve software cost estimation accuracy. In Proceedings of the 2005 workshop on predictor models in software engineering (pp. 1–6). New York: ACM. https://doi.org/10.1145/1082983.1083171 .Chiu, N.-H., & Huang, S.-J. (2007). The adjusted analogy-based software effort estimation based on similarity distances. Journal of Systems and Software, 80(4), 628–640.Dash, M., & Liu, H. (2003). Consistency-based search in feature selection. Artificial Intelligence, 151(1), 155–176.Dejaeger, K., Verbeke, W., Martens, D., & Baesens, B. (2012). Data mining techniques for software effort estimation: a comparative study. Software Engineering, IEEE Transactions on, 38(2), 375–397. https://doi.org/10.1109/TSE.2011.55 .Deng, K., & MacDonell, S. G. (2008). Maximising data retention from the ISBSG repository. In Proceedings of the 12th international conference on evaluation and assessment in software engineering (pp. 21–30). Swinton: British Computer Society http://dl.acm.org/citation.cfm?id=2227115.2227118 . Accessed 21 Jan 2014.Doquire, G., & Verleysen, M. (2011). An hybrid approach to feature selection for mixed categorical and continuous data. In International Conference on Knowledge Discovery and Information Retrieval. http://hdl.handle.net/2078.1/90765 . Accessed 2 Nov 2015.Dudani, S. A. (1976). The distance-weighted k-nearest-neighbor rule. IEEE Transactions on Systems, Man and Cybernetics, SMC, 6(4), 325–327. https://doi.org/10.1109/TSMC.1976.5408784 .Estévez, P. A., Tesmer, M., Perez, C. A., & Zurada, J. M. (2009). Normalized mutual information feature selection. IEEE Transactions on Neural Networks, 20(2), 189–201. https://doi.org/10.1109/TNN.2008.2005601 .Fayyad, U.M., & Irani, K.B. (1993). Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In Proceedings of the International Joint Conference on Uncertainty in AI (pp. 1022–1027). Presented at the International Joint Conference on Uncertainty in AI. https://www.researchgate.net/publication/220815890_Multi-Interval_Discretization_of_Continuous-Valued_Attributes_for_Classification_Learning . Accessed 22 June 2016.Fernández-Diego, M., & González-Ladrón-de-Guevara, F. (2014). Potential and limitations of the ISBSG dataset in enhancing software engineering research: a mapping review. Information and Software Technology, 56(6), 527–544. https://doi.org/10.1016/j.infsof.2014.01.003 .Ferreira, A., & Figueiredo, M. (2011). Unsupervised joint feature discretization and selection. In J. Vitrià, J. M. Sanches, & M. Hernández (Eds.), Pattern recognition and image analysis (Vol. 6669, pp. 200–207). Berlin, Heidelberg: Springer Berlin Heidelberg http://link.springer.com/10.1007/978-3-642-21257-4_25 . Accessed 4 Mar 2016.Fleuret, F. (2004). Fast binary feature selection with conditional mutual information. Journal of Machine Learning Research, 5, 1531–1555.González-Ladrón-de-Guevara, F., Fernández-Diego, M., & Lokan, C. (2016). The usage of ISBSG data fields in software effort estimation: a systematic mapping study. Journal of Systems and Software, 113, 188–215. https://doi.org/10.1016/j.jss.2015.11.040 .Gupta, P., Jain, S., & Jain, A. (2014). A review of fast clustering-based feature subset selection algorithm. International Journal of Scientific & Technology Research, 3(11), 86–91.Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The Journal of Machine Learning Research, 3, 1157–1182.Hall, M. A., & Holmes, G. (2003). Benchmarking attribute selection techniques for discrete class data mining. IEEE Transactions on Knowledge and Data Engineering, 15(6), 1437–1447. https://doi.org/10.1109/TKDE.2003.1245283 .Hausser, J., & Strimmer, K. (2009). Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks. Journal of Machine Learning Research, 10(Jul), 1469–1484.Hill, P. (2010). Practical software project estimation: a toolkit for estimating software development effort & duration. McGraw Hill Professional.Hsu, H.-H., Hsieh, C.-W., & Lu, M.-D. (2011). Hybrid feature selection by combining filters and wrappers. Expert Systems with Applications, 38(7), 8144–8150.Huang, S.-J., & Chiu, N.-H. (2006). Optimization of analogy weights by genetic algorithm for software effort estimation. Information and Software Technology, 48(11), 1034–1045. https://doi.org/10.1016/j.infsof.2005.12.020 .Huang, S.-J., Chiu, N.-H., & Liu, Y.-J. (2008). A comparative evaluation on the accuracies of software effort estimates from clustered data. Information and Software Technology, 50(9–10), 879–888. https://doi.org/10.1016/j.infsof.2008.02.005 .Huang, J., Li, Y.-F., & Xie, M. (2015). An empirical analysis of data preprocessing for machine learning-based software cost estimation. Information and Software Technology, 67, 108–127. https://doi.org/10.1016/j.infsof.2015.07.004 .ISBSG. (2013a). ISBSG Dataset Release 12. ISBSG. http://isbsg.org/ . Accessed 1 Mar 2016.ISBSG. (2013b). ISBSG Guidelines Release 12.ISBSG. (2013c). ISBSG Data Demographics Release 12.Jeffery, R., Ruhe, M., Wieczorek, I. (2001). Using public domain metrics to estimate software development effort. In Software Metrics Symposium, 2001. METRICS 2001. Proceedings. Seventh International (pp. 16–27). https://doi.org/10.1109/METRIC.2001.915512 .Jiang, Z., & Comstock, C. (2007). The factors significant to software development productivity. In C. Ardil (Ed.), Proceedings of World Academy of Science, Engineering and Technology, Vol 19 (Vol. 19, pp. 160–164). Presented at the Conference of the World-Academy-of-Science-Engineering-and-Technology, Bangkok: World Acad Sci, Eng & Tech-Waset.Jørgensen, M., Indahl, U., & Sjøberg, D. (2003). Software effort estimation by analogy and ‘regression toward the mean’. Journal of Systems and Software, 68(3), 253–262. https://doi.org/10.1016/S0164-1212(03)00066-9 .Kabir, M. M., Shahjahan, M., & Murase, K. (2011). A new local search based hybrid genetic algorithm for feature selection. Neurocomputing, 74(17), 2914–2928.Kadoda, G., Cartwright, M., Chen, L., Shepperd, M. (2000). Experiences using case-based reasoning to predict software project effort. In EASE 2000 (pp. 2–3). Presented at the EASE 2000, Staffordshire, UK.Keung, J., Kocaguneli, E., & Menzies, T. (2012). Finding conclusion stability for selecting the best effort predictor in software effort estimation. Automated Software Engineering, 20(4), 543–567. https://doi.org/10.1007/s10515-012-0108-5 .Kirsopp, C., Shepperd, M. J., Hart, J. (2002). Search heuristics, case-based reasoning and software project effort prediction. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 9–13). New York, USA. http://v-scheiner.brunel.ac.uk/handle/2438/1554 . Accessed 27 Jan 2016.Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1–2), 273–324. https://doi.org/10.1016/S0004-3702(97)00043-X .Kwak, N., & Choi, C.-H. (2002). Input feature selection for classification problems. IEEE Transactions on Neural Networks, 13(1), 143–159. https://doi.org/10.1109/72.977291 .Langdon, W. B., Dolado, J., Sarro, F., & Harman, M. (2016). Exact mean absolute error of baseline predictor, MARP0. Information and Software Technology, 73, 16–18. https://doi.org/10.1016/j.infsof.2016.01.003 .Li, Y. F., Xie, M., & Goh, T. N. (2009). A study of mutual information based feature selection for case based reasoning in software cost estimation. Expert Systems with Applications, 36(3), 5921–5931.Liu, H., & Motoda, H. (2012). Feature selection for knowledge discovery and data mining (Vol. 454). Springer Science & Business Media. https://books.google.es/books?hl=en&lr=&id=aaDbBwAAQBAJ&oi=fnd&pg=PP10&dq=Feature+selection+for+knowledge+discovery+and+data+mining&ots=iuMhcWZGcf&sig=KlmNEIcsBdDVs-m1HUuICfpYZiM . Accessed 25 Jan 2016.Liu, H., & Yu, L. (2005). Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4), 491–502. https://doi.org/10.1109/TKDE.2005.66 .Liu, H., Wei, R., & Jiang, G. (2013). A hybrid feature selection scheme for mixed attributes data. Computational and Applied Mathematics, 32(1), 145–161. https://doi.org/10.1007/s40314-013-0019-5 .Liu, Q., Wang, J., Xiao, J., Zhu, H. (2014). Mutual information based feature selection for symbolic interval data. In International Conference on Software Intelligence Technologies and Applications International Conference on Frontiers of Internet of Things 2014 (pp. 62–69). Presented at the International Conference on Software Intelligence Technologies and Applications International Conference on Frontiers of Internet of Things 2014. https://doi.org/10.1049/cp.2014.1537 .Lokan, C. (2005). What should you optimize when building an estimation model? In Software Metrics, 2005. 11th IEEE International Symposium (pp. 1–10). https://doi.org/10.1109/METRICS.2005.55 .Lokan, C., & Mendes, E. (2009a). Investigating the use of chronological split for software effort estimation. Software, IET, 3(5), 422–434. https://doi.org/10.1049/iet-sen.2008.0107 .Lokan, C., & Mendes, E. (2009b). Applying moving windows to software effort estimation. In Proceedings of the 2009 3rd international symposium on empirical software engineering and measurement (pp. 111–122). Washington, DC: IEEE Computer Society. https://doi.org/10.1109/ESEM.2009.5316019 .Lokan, C., & Mendes, E. (2012). Investigating the use of duration-based moving windows to improve software effort prediction. In Software Engineering Conference (APSEC), 2012 19th Asia-Pacific (Vol. 1, pp. 818–827). Presented at the Software Engineering Conference (APSEC), 2012 19th Asia-Pacific. https://doi.org/10.1109/APSEC.2012.74 .Lustgarten, J.L., Visweswaran, S., Grover, H., Gopalakrishnan, V. (2008). An evaluation of discretization methods for learning rules from biomedical datasets. In BIOCOMP (pp. 527–532).Mandal, M., & Mukhopadhyay, A. (2013). An improved minimum redundancy maximum relevance approach for feature selection in gene expression data. Procedia Technology, 10, 20–27. https://doi.org/10.1016/j.protcy.2013.12.332 .Mendes, E., Watson, I., Triggs, C., Mosley, N., & Counsell, S. (2003). A comparative study of cost estimation models for web hypermedia applications. Empirical Software Engineering, 8(2), 163–196.Mendes, E., Lokan, C., Harrison, R., Triggs, C. (2005). A replicated comparison of cross-company and within-company effort estimation models using the ISBSG database. In Software Metrics, 2005. 11th IEEE International Symposium (pp. 1–10). https://doi.org/10.1109/METRICS.2005.4 .Moses, J., Farrow, M., Parrington, N., & Smith, P. (2006). A productivity benchmarking case study using Bayesian credible intervals. Software Quality Journal, 14(1), 37–52. https://doi.org/10.1007/s11219-006-6000-4 .Núñez, H., Sànchez-Marrè, M., Cortés, U., Comas, J., Martínez, M., Rodríguez-Roda, I., & Poch, M. (2004). A comparative study on the use of similarity measures in case-based reasoning to improve the classification of environmental system situations. Environmental Modelling & Software, 19(9), 809–819. https://doi.org/10.1016/j.envsoft.2003.03.003 .Oh, I.-S., Lee, J.-S., & Moon, B.-R. (2004). Hybrid genetic algorithms for feature selection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(11), 1424–1437.Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226–1238. https://doi.org/10.1109/TPAMI.2005.159 .R Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing https://www.R-project.org/ .Romanski, P., & Kotthoff, L. (2014). FSelector: Selecting attributes. R package version 0.20. https://CRAN.R-project.org/package=FSelector .Shannon, C. E. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.Shepperd, M., & MacDonell, S. (2012). Evaluating prediction systems in software project estimation. Information and Software Technology, 54(8), 820–827.Shepperd, M., & Schofield, C. (1997). Estimating software project effort using analogies. Software Engineering, IEEE Transactions on, 23(11), 736–743.Somol, P., Pudil, P., & Kittler, J. (2004). Fast branch & bound algorithms for optimal feature selection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(7), 900–912.Song, Q., & Shepperd, M. (2007). A new imputation method for small software project data sets. Journal of Systems and Software, 80(1), 51–62.Top, O. O., Ozkan, B., Nabi, M., Demirors, O. (2011). Internal and External Software Benchmark Repository Utilization for Effort Estimation. In Software Measurement, 2011 Joint Conference of the 21st Int’l Workshop on and 6th Int’l Conference on Software Process and Product Measurement (IWSM-MENSURA) (pp. 302–307). https://doi.org/10.1109/IWSM-MENSURA.2011.41 .Vinh, L.T., Thang, N.D., Lee, Y.-K. (2010). An improved maximum relevance and minimum redundancy feature selection algorithm based on normalized mutual information. In 2010 10th IEEE/IPSJ International Symposium on Applications and the Internet (SAINT) (pp. 395–398). Presented at the 2010 10th IEEE/IPSJ International Symposium on Applications and the Internet (SAINT). https://doi.org/10.1109/SAINT.2010.50 .Witten, I.H., Frank, E., Hall, M.A., Pal, C.J. (2011). Data mining: Practical machine learning tools and techniques. Morgan Kaufmann

    Selección de alternativas en proyectos considerando los riesgos

    Full text link
    El tema de la selección de proyectos consiste en determinar qué proyectos de un portfolio llevar a cabo, o qué alternativa adoptar cuando existen restricciones presupuestarias, comerciales, ambientales, técnicas, de capacidad, de localización, etc. Pero desgraciadamente no se da la misma importancia a los diversos riesgos inherentes a todo proyecto o alternativa. Es posible, sin embargo, determinar valores cuantitativos de riesgo para cada par alternativa/amenaza a fin de considerar además restricciones de riesgo en dicha selección.Fernández Diego, M.; Munier, N. (2011). Selección de alternativas en proyectos considerando los riesgos. Novática. (214):36-39. http://hdl.handle.net/10251/34961S363921

    Redesigning a case study for the assessment of ethical responsibility

    Full text link
    [EN] This work presents the redesign of an activity (case study) that has been carried out over the last three years in the course Deontology and Professionalism for 2nd year students of the Informatics Engineering Degree at the Universitat Politecnica de Valencia (UPV) -Spain-. The aim of the activity is to encourage students to face ethical dilemmas that they may encounter in the exercise of their profession. Specifically, the case is about autonomous cars where decisions that must be taken imply a challenge, and even more when the programmers of the car deal with situations where human lives are endangered. The UPV has defined some general scoring rubrics in order to assess transversal competences of students. One of these rubrics deals with Ethics. Indicators included in this rubric are: The student: Becomes aware of other ways of seeing and perceiving things Critically accepts new perspectives, although this requires questioning your own perspective Differentiates facts from opinions in the arguments of other people Reflects on the consequences and effects (practical implications) that decisions and proposals have on people Recognizes the ethical and deontological aspects of the profession The case is introduced in a progressive way facilitating the development of the ethical competence and includes the required elements to assess the indicators established in the rubric. Thus, all the indicators proposed in the rubric can be evaluated by means of this activity. As a conclusion, the high degree of participation of the students in the activity is remarkable, which is on the one hand due to the transcendence of the theme and on the other hand because it is a very current topic closely linked to the computer science. Furthermore, the redesign of the case guided by the rubric allows an adequate evaluation.This research has been carried out under the project of innovation and educational improvement (PIME/A15) 'DAICE - Design of activities for the Innovation, Creativity and Entrepreneurship Competence' funded by the Universitat Politecnica de Valencia, and the Escola Tecnica Superior d'Enginyeria Informatica.Boza, A.; Fernández-Diego, M.; Cuenca, L.; Ruiz Font, L. (2017). Redesigning a case study for the assessment of ethical responsibility. INTED proceedings (Online). 6677-6682. doi:10.21125/inted.2017.1545S6677668

    The usage of ISBSG data fields in software effort estimation: A systematic mapping study

    Full text link
    [EN] The International Software Benchmarking Standards Group (ISBSG) maintains a repository of data about completed software projects. A common use of the ISBSG dataset is to investigate models to estimate a software project's size, effort, duration, and cost. The aim of this paper is to determine which and to what extent variables in the ISBSG dataset have been used in software engineering to build effort estimation models. For that purpose a systematic mapping study was applied to 107 research papers, obtained after a filtering process, that were published from 2000 until the end of 2013, and which listed the independent variables used in the effort estimation models. The usage of ISBSG variables for filtering, as dependent variables, and as independent variables is described. The 20 variables (out of 71) mostly used as independent variables for effort estimation are identified and analysed in detail, with reference to the papers and types of estimation methods that used them. We propose guidelines that can help researchers make informed decisions about which ISBSG variables to select for their effort estimation models.González-Ladrón-De-Guevara, F.; Fernández-Diego, M.; Lokan, C. (2016). The usage of ISBSG data fields in software effort estimation: A systematic mapping study. Journal of Systems and Software. 113:188-215. doi:10.1016/j.jss.2015.11.040S18821511

    Designing a map of classified learning activities for the customised development of transversal competencies

    Full text link
    [EN] he creation of the European Higher Education Area has brought about many changes. The most important is related to learning activities, which are considered seriously and in depth. In other words, the student will learn some contents at a certain level through a number of actions or tasks. According to Penzo et al. [1], learning-based teaching can be defined as the teaching organisation based on learning activities. The proposal for innovation and educational improvement presented in this paper focuses on identifying and classifying learning activities at different levels that reinforce those aspects required for an appropriate scope of the competence. The experience acquired and the application in the classroom of the work developed in previous projects has shown us that each learning activity covers certain levels of the competence. Even the same activity carried out in different courses should be classified into different levels. The overall aim is to identify the set of learning activities that improve the appropriate scope of the competence. More specifically, the aims to be covered are: 1. Design of the scale to identify levels for the scope of the competence. 2. Identification and classification of activities according to the scale established to build the map of activities. The design of the map of classified learning activities enables: 1. To have a broad vision of the activities carried out for the development of the competence. 2. To identify overlaps of activities at the same level, which raises the question of whether or not to eliminate any of the activities. 3. To identify levels not addressed by any activity, which encourages the development of activities that cover levels not reached by other activities. 4. To offer the students the map of activities as a tool for their training. In this way, the map of activities becomes a tool for the students, where they can identify the activities by level and work to a greater extent on the most suitable ones according to their needs and potential.This research has been carried out within the framework of the project of innovation and educational improvement (PIME 2017-18 Ref. A10) funded by the Universitat Politècnica de València and the School of InformaticsBoza, A.; Fernández-Diego, M.; Gordo, ML.; Ruiz Font, L. (2018). Designing a map of classified learning activities for the customised development of transversal competencies. INTED proceedings (Online). 3081-3086. https://doi.org/10.21125/inted.2018.0590S3081308

    Las colaboraciones empresariales y los tipos de socios tecnológicos

    Get PDF
    Mi trabajo consiste en una parte teórica que explica la evolución y la relevancia de las colaboraciones tecnológicas entre empresas, y una parte empírica donde, a partir de tablas y gráficas analizamos las variables que suponen una relevancia significativa a la hora de colaborar entre empresas. Por último realizamos nuestras propias conclusiones acerca de los resultados obtenidos en las tablas y gráficas.<br /

    The use of timelines as a strategy for teaching legislation issues to IT engineering degree students

    Full text link
    [EN] A timeline is a graph showing a sequence of events on a particular topic. Among other things, it allows to visualize a space-time relationship of the most relevant periods of the topic to be addressed. These timelines have always been valuable teaching strategies. However, with the use of multimedia resources linked to the timeline such as images or videos, there is a greater possibility that students will relate the contents to specific objects that will help them in the understanding and memorization of dates or events. The course Deontology and Professionalism in the degree of IT engineering at the Universitat Politècnica de València incorporates contents that enable students to be exposed to issues of professional practice, ethical conduct and computer legislation. When working on the legislation aspects, we suggest the use of timelines as a teaching-learning strategy. Specifically, the Spanish and European chronologies of data protection and intellectual property legislation are presented as an example. But if we really want to take advantage of this tool, there is nothing better than involving students in the creation of such timelines. In this way they will be much more involved and motivated.Fernández-Diego, M.; González-Ladrón-De-Guevara, F.; Ruiz Font, L.; Boza, A. (2021). The use of timelines as a strategy for teaching legislation issues to IT engineering degree students. IATED. 8678-8683. https://doi.org/10.21125/inted.2021.1798S8678868

    Aplicación del puzzle de Aronson para trabajar el aprendizaje colaborativo y el desarrollo de competencias genéricas de los estudiantes

    Full text link
    [ES] El puzzle de Aronson es una técnica de aprendizaje colaborativo cuya principal característica es que son los propios alumnos, trabajando en equipo, los que hacen de tutores del aprendizaje de sus compañeros siendo, a la vez, tutorizados por ellos. Este trabajo analiza la aplicación de esta técnica en la asignatura Gestión de Recursos Humanos del grado en Gestión y Administración Pública, así como los aprendizajes y resultados docentes obtenidos. La utilización del puzzle de Aronson fomenta el aprendizaje colaborativo de los alumnos, además de desarrollar competencias genéricas de la titulación tales como "demostrar compromiso ético en el trabajo" que difícilmente se pueden adquirir y/o evaluar con otras metodologías docentes.Guijarro, E.; Babiloni, E.; Fernández-Diego, M. (2014). Aplicación del puzzle de Aronson para trabajar el aprendizaje colaborativo y el desarrollo de competencias genéricas de los estudiantes. Editorial Universitat Politècnica de València. 496-505. http://hdl.handle.net/10251/82240S49650
    • …
    corecore